
A quick guide to reading,
manipulating, plotting and

writing data in CDAT

Outline

• Reading data from files

• Basic file/data manipulation

• Basic plotting

• Writing output to files

CDAT-compatible data formats (1)

But the best way to read data in CDAT is to use the
“cdms” module. Recognised formats are:
– NetCDF (standard for input and output) – CDMS

follows the Climate and Forecasts (CF) Metadata
Convention for NetCDF.

– HDF4 – currently incompatible with the NetCDF
option due to library conflicts. CDAT can be built
with either, not both. There is a hope ahead with a
merger planned of NetCDF4 and HDF5 libraries
(http://my.unidata.ucar.edu/content/software/netcd
f/netcdf-4/index.html).

http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4/index.html
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4/index.html
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4/index.html

CDAT-compatible data formats (2)

• More recognised format are:

– GRIB – is handled via the GrADS/GRIB interface,
a slightly convoluted but effective way to get data
into CDAT.

– PCMDI DRS format – not covered here as
relatively little UK usage.

– CDML (Climate Data Markup Language) – the
internal CDAT XML representation that points to
multiple binary files.

Other self-describing formats of interest in the UK

• You can also get support for:

– PP-format – the BADC has developed code for reading the
Met Office proprietary field data format. This should soon be
included in the I/O layer beneath CDMS (known as cdunif –
a C-layer that provides read access to multiple formats, and
write access to NetCDF). Ask for details.

– NASA Ames – a group of ASCII formats developed at NASA
for field experiments and data exchange. Used extensively in
UK atmospheric research. The BADC has developed a
Python package to bridge NASA Ames data into CDAT
(http://home.badc.rl.ac.uk/astephens/software/nappy).

http://home.badc.rl.ac.uk/astephens/software/nappy

CDMS (The heart of CDAT!)

CDMS is the python package at the core of CDAT. It
provides the best way to read and write data:

• Opening a file for reading:
>>> f=cdms.open(file_name)

– will open an existing file protected against writing

• Opening a new file for writing:
>>> f=cdms.open(file_name, ’w’)

– will create a new file even if it already exists

• Opening an existing file for writing:
>>> f=cdms.open(file_name, ’r+’) # or ‘a’

– will open an existing file ready for writing or reading

Reading data from a file

Multiple ways to retrieve data:
All of it:
>>> data=f(‘var’)

Specifying dimension name and values:
>>> s=f(‘lnsp’, time=(“1999-1-1”, “2000-12-31”), \

level=1000, lon=5)

- can use time, level, latitude, longitude, t, z, y, x, lat and lon.
- can provide either two values in a tuple “()” or just one.
- times are strings whereas others are just values (int or float)

Or use “slice” and indices instead of values:
>>> s=f(‘tco3’, lat=slice(index1,index2,step))

- “step” is useful if you want to get every nth value in a dataset.

Interrogating a CDAT file/dataset

Before extracting data you can find out about the dataset
or file with:

>>> f.id # returns the file/dataset name
>>> f.listvariables() # returns a list of variables in the file
>>> f.variables # is a dictionary of variables in the file
>>> f.axes # returns the axes in the file
>>> f.attributes # returns all the file attributes (including axes)
>>> f.getVariable(‘temp‘) # same as f(‘temp’)
>>> f.listglobal() # returns a list of global file attributes

Remember: you can list the methods using “dir(<object>)”.

Interrogating the variable metadata (1)

• From your variable object you might want to find out:
– What axes is this variable defined against?
>>> var.getAxisList() # to see all of them
>>> var.getLongitude() # longitude axis only
>>> var.getLongitude()[:] # longitude values
var.getTime(), var.getLevel() – similar
>>> var.getGrid() # grid (if appropriate)

– What shape is the variable?
>>> var.shape

– What is the size (number of values) and rank of this
variable?
>>> var.size()
>>> var.rank()

Interrogating the variable metadata (2)

– What is the missing value?
>>> var.getMissing()

– What attributes exist for this variable?
>>> var.listattributes()

– What is the value of attribute ‘name’?
>>> var.getattribute(‘name’) # = var.name

– What is the axis order of this variable?
>>> var.getOrder()

– What is all the metadata for this variable?
>>> var.attributes

Interrogating axes (1)

• From your axis object you might want to find out:
– What does this axis look like?
>>> ax=var.getAxis(2)
>>> print ax

id: latitude
Designated a latitude axis.
units: degrees_north
Length: 73
First: -90.0
Last: 90.0
Other axis attributes:

axis: Y
Python id: 40ba476c

Interrogating axes (2)

– What are the units?
>>> ax.units

– What are the actual values?
>>> ax.getValue() # or ax[:]

– Is it time? Is it latitude?
>>> ax.isTime() ; ax.isLatitude()

– What are the bounds (if they exist)?
>>> ax.getBounds()

– What is the key metadata for this axis?
>>> ax.listall()

– Is it a circular axis (i.e. longitude wraps around itself)?
>>> ax.isCircular()

Sub-setting and squeezing the actual data

• As we’ve already seen, when you want to subset
data you can just specify the spatial and temporal
region you want (and you can keep doing it…):
>>> import cdms
>>> f=cdms.open(‘file1.nc’)
>>> var=f(‘temp’, time=(“1999-1”, “1999-2”))
>>> slab1=var(level=16, latitude=(0, 90))
>>> slab2=slab1(latitude=(30,40))
>>> slab3=slab2(longitude=2)
Note that you still have a 4-D variable,
You might want to remove the singleton axes:
>>> slab4=slab3(squeeze=1)
squeeze also comes in handy when plotting

Mathematical manipulation of data arrays

• Manipulating arrays (i.e. variables) is simple as the
whole thing can be included in your equations:

>>> var4=(var1**0.5)+(var2/var3)

>>> var2=var1*2.5

>>> import MV.cos
>>> cosvar=MV.cos(var1)

• Note: mathematical functions for arrays are in MV, for
basic mathematical functions import the “math”
module. E.g. math.pi, math.cos etc.

Creating simple plots with VCS

• All plotting requires the VCS module and a canvas to
be created:
>>> import vcs

>>> x=vcs.init()

• You then use methods on the canvas object (‘x’):
>>> x.plot(data) # plots default plot for data shape
>>> x.plot(2Dfield)
>>> x.plot(1Ddata)

• Note: for 3D (or 4D) data VCS will find the first 2-D
field and plot that.

>>> x.plot(2Dfield)

>>> x.plot(2Dfield)

Saving a VCS plot

• Once you have created a plot you can save it in one
of various formats, examples are:

>>> x.plot(data)

>>> x.gif(“myfile.gif”) # writes a GIF file

>>> x.ps(“mypostscript.ps”) # writes a PS file

Opening a file for writing

• To write a new CDMS file:
>>> outfile=cdms.open(‘myfile.nc’, ‘w’)
>>> # and to close:
>>> outfile.close()

• Note: Data may not be written to a file until you close
it, so make sure you do!

• Same grammar as the built-in open function! This can
be a reason to not import everything from CDMS
because “ from cdms import * ” will overload the
built-in ‘open’ function.

Writing file variables and attributes

• Writing CDMS variables, Numeric arrays or Masked
Arrays to a CDMS file object is very easy:

>>> outfile.write(myvar)
>>> outfile.write(a_numeric_array)

• Writing file attributes (file level metadata)
corresponds to setting global attributes in a NetCDF
file and is simply done by setting class attributes:

>>> outfile.source=“Data from Galaxy 4B02”
>>> outfile.sauce=“Ketchup”
>>> outfile.version=“3.1”

Basic File I/O example

• File I/O to NetCDF is simple:

import cdms
ufile = cdms.open(‘u_wind.nc’)
vfile = cdms.open(‘v_wind.nc’)

u = ufile(‘u’)

v = vfile(‘v’)

wind_speed = (u**2 + v**2)**0.5

outfile = cdms.open(‘wspd.nc’, ’w’)

outfile.write(wind_speed)

outfile.close()

cdms.open function
binds ufile to an instance
of CdmsFile

u and v are instances of
the TransientVariable class.

wind_speed is a new
TransientVariable instance

outfile is another
CdmsFile instance with
write permission

	A quick guide to reading, manipulating, plotting and writing data in CDAT
	Outline
	CDAT-compatible data formats (1)
	CDAT-compatible data formats (2)
	Other self-describing formats of interest in the UK
	CDMS (The heart of CDAT!)
	Reading data from a file
	Interrogating a CDAT file/dataset
	Interrogating the variable metadata (1)
	Interrogating the variable metadata (2)
	Interrogating axes (1)
	Interrogating axes (2)
	Sub-setting and squeezing the actual data
	Mathematical manipulation of data arrays
	Creating simple plots with VCS
	Saving a VCS plot
	Opening a file for writing
	Writing file variables and attributes
	Basic File I/O example

